
Introduction To
Graphs and Networks

Fall 2013
Carola Wenk

What is a Network?
• We have thought of a computer as a single entity, but

they can also be connected to one another.

What are the advantages of connecting computers together?
Communication and Computation.

Internet

Communication and Computation
• "A network of such [computers], connected to one another by wide-

band communication lines [which provided] the functions of present-
day libraries together with anticipated advances in information storage
and retrieval and [other] symbiotic functions."

—J.C.R. Licklider, 1960, Man-Computer Symbiosis

• In 2010, there were 107 trillion emails sent; there are 1.88 billion email
users.

• Communication enables long-distance computation; in fact this is one
of the reasons networking was initially studied.

“Dumb” Terminal Mainframe

Communication and Computation

...

Solve Base Cases

...

...

Solution

Input

...

...

• Communication also enables coordinated computation; if a task can
be split up into smaller parts, we can solve each part simultaneously.

Communication and Computation
• Communication also enables coordinated computation; if a task can

be split up into smaller parts, we can solve each part simultaneously.

...

...

Input

...

Internet

Solution

...

History of the Internet

The Internet was initially developed as a military research project in the
1970s. The goal was to connect computers across a wide geographic
area with very high “availability”.

Communication on the Internet works by a protocol in which “packets”
of information are transmitted. Each packet is routed from source to
destination.

Internet Routing

IP Address IP Address

Each device connected to the Internet has an “IP” address, which is
just a 32-bit number. The route of each transmitted packet is
determined as it moves along its path.

Due to the ubiquity of connected devices the current protocol for
naming devices will run out of addresses soon - IPv6 uses 128-bit
addresses.

Internet Routing

TCP/IP works at a low level to break up communication tasks into packets,
and manages how they propagate from source to destination.

Internet routers do most of the work in guiding TCP/IP packets; because of
this distribution of work, there are often many paths that can be taken from a
source to a destination.

TCP/IP = “Transmission Control Protocol
over Internet Protocol”

TCP/IP was designed in the early 1970s to
be used in a “packet switching” network.

It was initially tested on a 4-node network
and now is used on millions of computers.

Network Abstraction

The Internet is modeled as a set of
“nodes” that are connected by
“links”.

For the purposes of
communication, we only care
about how we are able to get from
one node to another.

How can we determine the best path from point A to point B in a
large network? Can this be done efficiently?

Bridges of Königsberg

Map of Konigsberg The Abstraction

In 1735, Leonhard Euler posed the question of whether there was
a path that crossed every bridge exactly once. Is there such a
path?

Abstracting away from the specific city of Königsberg allows us to
answer this question for any city. Do you see a rule?

Graphs: Abstract Networks
A graph G consists of a set of
vertices that are connected by
edges. We write G=(V,E), where V
is the set of vertices and E is the
set of edges.

Generalizing the Königsberg problem, a graph has an Eulerian
path if and only if all but two vertices are involved in an even
number of edges.

Graphs can represent any abstract relationship between pairs of
objects, and are particularly useful in analyzing computer
networks.

What is the maximum number of
edges a graph can have (i.e., every
pair of vertices has one edge)?

The Internet Graph

Nearly every profitable and/or useful application on the Internet
must use algorithms on graphs.

Example: Google PageRank analyzes the web-graph to
determine which pages are most relevant to search queries.

Virtual Networks

• Social networks aren’t formed from physical hardware, but by
publicly-stated relationships.

• By analyzing ‘friendships’, social networking companies can
gather information for targeted advertising.

worldwide facebook graph demographic clustering

Analyzing Graphs
• Two fundamental questions on graphs:

Can we get from any vertex to any other vertex?

What is the shortest path from between a given pair of
vertices?

• In a computer network, these questions give us a basic idea
of where communication is possible, and how quickly it can
be accomplished.

• In a social network, these questions tell us how “social” a
particular population is, and how well two individuals know
one another.

Road networks

Navigation systems answer shortest
path queries based on travel times on
road segments.

A

B

• Graph: Vertices are
intersections, edges are road
segments.

• What is the shortest path
from A to B?

Two Networking Questions
Connectivity: Given a graph, is any vertex reachable
from any other vertex?

Shortest Paths: Given a graph and two vertices, what
is the shortest path between the two?

Two Networking Questions
Connectivity: Given a graph, is any vertex reachable
from any other vertex?

Shortest Paths: Given a graph and two vertices, what
is the shortest path between the two?

Two Networking Questions
Connectivity: Given a graph, is any vertex reachable
from any other vertex?

Shortest Paths: Given a graph and two vertices, what
is the shortest path between the two?

Two Networking Questions
Connectivity: Given a graph, is any vertex reachable
from any other vertex?

Shortest Paths: Given a graph and two vertices, what
is the shortest path between the two?

Graph Connectivity
• Given a graph as input (vertices and edges), we want

to produce as output the number of “connected
components” of the input graph.

2 Connected
Components

“Single-Source” Shortest Paths
• Given a graph as input (vertices and edges) and a

vertex , we want to produce as output the shortest
paths from to all other vertices.

1

1 2

2

2

33

4

Graph Representations
Both of these problems require a graph as input. How do
we represent the vertices and edges? How can we check
if an edge is in the graph?

Graph Representations
Both of these problems require a graph as input. How do
we represent the vertices and edges? How can we check
if an edge is in the graph?

With an adjacency list, we can store all edges and
examine any edge at any vertex.

Lists and Dictionaries
Both of these problems require a graph as input. How do
we represent the vertices and edges? How can we check
if an edge is in the graph?

Python lists and dictionaries allow “random access”, and
dictionaries can have arbitrary “keys”.

Lists and Dictionaries
Both of these problems require a graph as input. How do
we represent the vertices and edges? How can we check
if an edge is in the graph?

Does one of these look like a graph?

Graphs as Dictionaries
Both of these problems require a graph as input. How do
we represent the vertices and edges? How can we check
if an edge is in the graph?

The dictionary in Python can implement an adjacency list.

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• How can we find out if a graph is “connected”?

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• How can we find out if a graph is “connected”?

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• How can we find out if a graph is “connected”?

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• How can we find out if a graph is “connected”?

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• How can we find out if a graph is “connected”?

Breadth-First Search
• Now that we have a way to actually implement graphs,

how do we solve our two basic problems?

• The graph is not connected, because we cannot visit
any new vertices, but have not visited all of them.

Breadth-First Search
• This intuitive idea to “visit” vertices can be made more

concrete, but how do we organize our search? How do we
keep track of vertices that have been visited?

• Note that the order of visitation gives us shortest path
distances!

1

1 2

2

2

3 3

4

Breadth-First Search
• To keep track of the order of visitation, we can use a

queue.

• A queue is just a list, but we only remove items from
the front, and add items at the end.

1

1 2

2

2

3 3

4

Breadth-First Search
Algorithm:
1. Initialize a queue with the starting vertex
2. While the queue is not empty

a. Dequeue the next vertex from the queue
b. Enqueue all its neighbors that have not been

visited/enqueued before

1

1 2

2

2

3 3

4

Breadth-First Search
Runtime:
• Each vertex is enqueued at most once, and therefore

dequeued at most once
• We need to examine each edge once to update

distances
Runtime O(n+m) where n=|V| is the number of vertices

in G, and m=|E| is the number of edges in G
The runtime is linear in the size of the graph

